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This communication presents simple analytic formulas for the noise and distortion
aggravation performance of Sallen and Key filter sections, under the approxima-
tion that the resistor noise contribution is small compared with the amplifier
noise. This performance is optimised analytically and subject to component
constraints.

1 NOISE

Noise in active filter has two main origins: the network resistors and the amplifier. The
analytical optimisation used in this communication is made possible because in practical
circuits, the resistor noise contribution is small compared with the amplifier noise contri-
bution ([1], sec. VI). Thus the noise minimisation problem reduces to the minimisation of
the amplifier-to-output transfer function (not to mention the choice of a quiet amplifier!).
After this optimisation, if desired, the resistor noise contribution can also be minimised
by a simple denormalisation of resistor and capacitor values; indeed the designer who is
interested in the ultimate noise figure can always eliminate the resistor noise contribution,
since by either indulging in large capacitors, or by bufferring the amplifier output to permit
low Rmin, he can make R as small as he likes.

2 DISTORTION

A recent paper by the author [2] has shown that the fact of employing an amplifier in
a filter section worsens the amplifier’s distortion products by an amount, the Distortion
Aggravation Factor, or FDAG equal to the value of the transfer function from amplifier to
filter-output.

FDAG is frequently worse at the centre-frequency ω = 1/RC = ω0, and in practical
circuits FDAG(ω = ω0) may be of the order of between 1 and 103.

Thus minimising FDAG optimises both noise and distortion simultaneously, a most for-
tunate and unusual situation in electronics. Of course the reduction of resistor noise by
denormalisation will maximise distortion, because of the increased amplifier loading, a
more normal state of affairs.



3 INPUT-REFERRED OR OUTPUT-REFERRED NOISE ?

Depending on the design context in which the filter occurs, the designer may be in-
terested in optimising either the output-referred noise (V noise

out ) or the input-referred noise
(V noise

in /g).
For example, if the filter stage occurs as part of an amplifying chain, the input-referred

noise should be optimised since the gain of the filter can then be used as part of the gain
of the amplifying stages. On the other hand, if the filter is to be used to treat an already
full-level signal, the output-noise should be optimised, since any gain ”g” in the filter will
have to be cancelled out by an attenuator of gain ”1/g” fitted in front of the filter to avoid
the filter clipping in the passband.

There are traps here for the unwary optimiser. For example, in a multiamplifier stage,
the noise can be ”optimised” by giving the first amplifier a gain g → ∞, and the last
amplifier a gain of g → 0, a trivial result. This trap was, for example responsible for the
spectacular improvement in Haase’ and Bruton’s paper [1]. A better performance could
have been obtained by fitting a high-gain preamplifier and following attenuator.

Distortion and input-referred noise are both optimised by minimising FDAG, output-
referred noise by minimising g · FDAG. Both these problems will be considered.

4 SALLEN AND KEY LOW-PASS SECTION

We consider the circuit (Fig. 1), whose transfer function is easily shown to be

Vout/Vin = g / (s2 + s/Q + 1) (1)

where
s = j · ω ·R · C and Q = γξ / (ξ2 + (1− g)γ2 + 1) (2)
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Figure 1: The Sallen and Key filter

4.1 Distortion Aggravation Factor

This being equal to the transfer function from amplifier to filter output, we consider the
circuit in Fig. 2. It can be shown that

FDAG = Vout/Uin =
s2 + s(1 + ξ2 + γ2)/ξγ + 1

s2 + s(1 + ξ2 + (1− g)γ2)/ξγ + 1
(3)

Thus FDAG is a function of frequency and reaches its maximum (i.e., worst) value at
s = j, i.e., ω = 1/RC = ω0

FDAG = Q · (ξ2 + γ2 + 1)/ξγ (4)



from (Eq. 2),
FDAG = Q · g · γ/ξ + 1 (5)

It will be seen shortly that this can be improved, while preserving the wanted filter
transfer function, by increasing ξ and γ, i.e., by increasing the disparity between the two
resistors and between the two capacitors.
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Figure 2: Calculation of FDAG

5 COMPONENT CONSTRAINTS

We will assume that the usable range of component values is limited to between Cmin

and Cmax, and Rmin and Rmax, say. Furthermore, the conditions on R and C interact since
their product is fixed by the desired filter frequency:

C/γ > Cmin and R/ξ > Rmin

so multiplying
ξγ < C · R/(Cmin · Rmin) (6)

similarly,
ξγ < Cmax · Rmax/(C · R) (7)

Thus ξγ is bounded by the two conditions (6) and (7), and so our minimisations must
be performed subject to an upper bound on ξγ.

6 MINIMISINGDISTORTIONAND INPUT-REFERRED NOISE

We wish to minimise FDAG = Q · g · γ/ξ + 1 from Eqn. 5.
Then since Q and ξγ remain constant, we must minimise g · γ2 to minimise FDAG.

Rearranging (2),
gγ2 = 1− ξγ/Q+ (ξγ)2/γ2 + γ2 (8)

This is a minimum when

δ(gγ2)/δγ|Q, ξγ constant = 0 = −2(ξγ)2/γ2 + 2γ

i.e., when

ξ = γ =
√

ξγ (9)

The practical procedure is then as follows:
1) Q is given and CR is known from πf0/2
2) ξγ is chosen not to contavene either of the conditions (6) or (7)
3) ξ and γ are calculated from

√
ξγ (9)

4) g is calculated from (2)



For example, let us optimise the distortion and input-referred noise of a stage with
q = 5, and the component constraint ξγ = 9.0. Then (9) gives ξ = γ = 3, when (2)
gives g = 1.91111, giving a resultant FDAG = Qgγ/ξ + 1 = 10.555 (see Fig. 3). Whereas
the ”standard” design has ξ = 1, g = 1 and γ = 10, (see Fig 4.) and gives FDAG =
Qgγ/ξ + 1 = 51.0. The simplicity of these calculations compares favorably with that of a
computer-based optimisation.
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Figure 3: Q = 5, optimised for distortion and input noise.
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Figure 4: Q = 5, standard design.

6.1 Without Component Constraints

We should note that the most favorable optimisation, that is one without component
constraints, i.e., ξγ → ∞ is, from (9), ξ = γ → ∞ ; from (2), g = 2 − 1/Q giving
FDAG

ω=ω0
(optimum) = Qgγ/ξ + 1 = 2Q This result represents a useful ”goodness factor” for

evaluating the worth of the Sallen and Key circuit.

7 MINIMISATION OF OUTPUT-REFERRED NOISE

We wish to minimise

g · FDAG
ω=ω0 = Q/ξγ(1/γ2 − ξ/Qγ + ξ2/γ2 + 1)(ξ2 + γ2 + 1)

from (2) and (5). We therefore set δ(g ·FDAG)/δξ|Q,ξγ constant equal to 0, which reduces
to

γ4 + (2(ξγ)3/Q− 4(ξγ)2)/γ2 − 3(ξγ)4/γ − 1(ξγ)2 + ξγ/Q− 1 = 0 (10)

and if Q is known, and ξγ taken from the stricter condition of (6) or (7), then this can
easily be solved for γ by successive approximation. Then ξ is calculated from ξγ/γ, and g
from (2), as in Section 6.



For example, let us optimise the output-referred noise of our Q = 5 stage with ξγ = 9.
Equation (1) becomes

γ4 + (291.6− 324)/γ2 − 19683/γ4 − 161.2 = 0

which is satisfied by γ = 9 / 3.9521 = 2.27727, when g = 1.2808, giving a resultant
g · FDAG = g (12.114) = 15.516. (See Fig. 5)
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Figure 5: Q = 5, optimised for output-referred noise.

8 GAIN CONSTRAINT

It may also arise that the passband gain g of the filter is fixed by the application. In
this case, no optimisation is possible except to choose ξγ as high as possible, and solve (2)
for ξ and γ; i.e.,

for g 6= 1,

γ2 =
ξγ/Q− 1 +

√

(ξγ/Q)2 + 4(g − 1)ξ2γ2

2(1− g)
(11)

and for g = 1,

γ =
ξγ

√

ξγ/Q− 1
(12)

(See Fig. 6)
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Figure 6: Q = 5, optimised for noise and distortion with g = 1

8.1 Without Component Constraints

We note that in the case where the gain is fixed, but the component constraints are relaxed,
i.e. ξγ → ∞, then Eqn. 11 becomes, for g 6= 1,

γ2 → ξγ · 1 +
√

1 + 4q2(g − 1)

2Q(1− g)
(13)



and Eqn. 12 becomes, for g = 1,

γ →
√

Q
√

ξγ

ξ → γ/Q (14)

giving
F ω=ω0
DAG = Q2 + 1 (15)

This should be compared with the distortion aggravation factor of 2Q that can be
obtained by optimising g also (Section 7). Unity gain amplifiers should therefore be avoided
unless the desired Q is approximately Q ≃ 1. They are also, of course, undesirable for
sensitivity reasons [4].

9 AMPLIFIER LOADING

We state here for completeness that the maximum current the Sallen and Key network
can draw from its amplifier occurs in the stopband, and is equal to ξVin/R.

10 CONCLUSIONS

The Sallen and Key second-order filter section has been optimised analytically for dis-
tortion, for input-referred noise, and for out-referred noise, under the realistic assumtion
that the resistor noise is small compared with the amplifier noise. Work is now in progress
to optimise FDAG for other filter circuits, with a view to intercomparison; this has so far
shown that the Sallen and Key circuit, in spite of its poor sensitivity characteristics, is one
of the designer’s best choices as far as noise and distortion-aggravation are concerned.
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11 AUTHOR’S COMMENT IN 2017

I seem to have had the unstated assumption that ξ > 1 and γ > 1
But I don’t see a reason why they can’t also be less than one.
So those Component Constraints C/γ > Cmin, and R/ξ > Rmin should also have
mentioned the conditions:

C / γ < Cmax and R/ ξ < Rmax and

C · γ > Cmin and R · ξ > Rmin and

C · γ < Cmax and R · ξ < Rmax

That makes eight constraints, so the multiplication ξγ which yields [6] and [7], which is
only two constraints, is already suspect from an information-theoretic point of view.
E.g. [6] and [7] bypass all component-constraints if γ is extremely large and ξ extremely
small, or vice versa.

Thus ”since Q and ξγ remain constant” is wrong, and the rest of the paper falls apart.
Indeed, it falls apart starting with ”It will shortly be seen that”, just after Eqn. [5].

Concretely, step 2) of the ”practical procedure”
2) ξγ is chosen not to contavene either of the conditions (6) or (7)

is undermined.

And Eqn. [12] is obviously doubtful, because of:
√

ξγ/Q − 1
So what happens when Q > ξγ and the square root is imaginary ?
For example if ξ = 2 and γ = 2, then Q = 5 so that (4/5− 1) is negative.

In summary, if indeed ξ > 1 and γ > 1 does produce an optimisation,
which it often does, then this paper works. Otherwise it doesn’t work.

A more reliable source is the paper by Oscar Juan Bonello on ”Distortion in Positive- and
Negative-Feedback Filters”, published in the Journal of the Audio Engineering Society in
April 1984.
See: http://www.pjb.com.au/comp/index.html#electronics
Or: http://www.pjb.com.au/comp/free/1984 JAES bonello paper.pdf


